
Approximating Arcs Using Cubic Bézier Curves

Joe Cridge
www.joecridge.me

June 2015

Abstract

Bézier curves can be used to approximate elliptical arcs in systems
where there is no native arc support; this is useful in many graphics
(and other computer aided design) applications owing to the extensive
support for cubic Bézier curves across the multitude of vector-based
formats and specifications. We propose a simple method to approx-
imate an arbitrary elliptical arc using up to four cubic Bézier curves
and find that it can be accurate to one pixel when rendered to displays
as large as the emerging 4K standard. Means of extending the method
should greater accuracy be required are also suggested.

Introduction

Bézier curves provide a convenient means of expressing arbitrary, smooth
curves in terms of a relatively small number of waypoints. This has im-
portant uses in vector graphics, since it allows succinct representation and
storage of indefinitely scalable curved paths.

A general Bézier curve is comprised of a set of n + 1 waypoints. The
first and last waypoints, r0 and rn, form the endpoints of the curve and
are commonly known as anchor points, while the intermediate points lie
around the curve (connecting to form a convex hull which encloses the
curve, defining its shape), and so are known as control points. The curve is
then described at all points from start to finish by a weighted sum over the
waypoints in the parameter t ∈ [0, 1]. Specifically, the weighting of the jth

waypoint is given by the jth Bernstein basis polynomial1, hence:

Bn(t) =
n∑

j=0

nCj t
j (1− t)n−j rj . (1)

1See https://en.wikipedia.org/wiki/Bernstein_polynomial.

1

A

B

C(t ..= 0)

(t ..= 1)

Figure 1: A quadratic Bézier curve.

Linear curve The first order Bézier curve is the simplest, and amounts to
nothing more than linear interpolation. Suppose that we wished to describe
the line from a point A to another point B; using a Bézier curve, we would
write:

B1(t) = (1− t)a+ tb. (2)

Quadratic curve Second order Bézier curves provide a means of describ-
ing parabolic arcs. As in Figure 1, a parabolic arc between anchor points A
and C with control point B is described by the equation

B2(t) = (1− t)2 a+ 2t (1− t)b+ t2c. (3)

By differentiating Equation 3, it is easy to see that the arc is tangent to AB

when t = 0 at A, and tangent to BC when t = 1 at C.

Cubic curve Cubic Béziers use two control points, which gives them
enough degrees of freedom to start usefully approximating arbitrary curves.
If we label the waypoints A through D (see Figure 2), we have:

B3(t) = (1− t)3 a+ 3t (1− t)2 b+ 3t2 (1− t) c+ t3d. (4)

Similarly to quadratic Bézier curves, it is true that for cubic Béziers the curve
is tangent to AB at A and tangent to CD at D.

Higher order Bézier curves exist, and provide greater accuracy when ap-
proximating an arbitrary curved form, but they are naturally more compu-
tationally expensive to evaluate.

It is our intention to devise a method that will allow the representation of
elliptical arcs using Bézier curves to within a desired tolerance. Since cubic

2

A

B
C

D(t ..= 0)

(t ..= 1)

Figure 2: A cubic Bézier curve.

Bézier curves are the de facto standard when it comes to vector-graphics,
and are nearly universally available in modern computer graphics systems
(including the PostScript and SVG formats), we will use tham exclusively
in our method, favouring the use of a composite of multiple cubic Bézier
curves over the use of a single curve of higher order.

Method

In order to determine the suitability of using cubic Béziers to model elliptical
arcs, we will propose a method of fitting a Bézier to a small, circular arc,
and then calculate by numerical means the maximum angle of arc that this
method can be applied to whilst remaining within a given tolerable error in
radius. To approximate arcs of angle greater than this practical maximum,
we will use a composite of curves of smaller arcs, and to approximate non-
circular arcs we will scale the waypoints of an approximated circular arc
linearly2 in the directions of the major and minor axes.3

Consider a circular arc of unit radius which subtends an angle 2α from
the origin; it is convenient to centre this arc on the x-axis as in Figure 3.
Labelling the Bézier waypoints A through D as before, and additionally
denoting the midpoint of the circular arc M, we make the following obser-
vations:

2This is fine, so long as we are not concerned with the accuracy of the start and end angles
of the arc. Specifically, the relationship between the angle ϑ′ that should be specified and
the desired angle ϑ to be rendered is tanϑ′ = w

h
tanϑ, where w and h are, respectively, the

lengths of the horizontal and vertical axes (see below). In any case, the start and end angles
will remain within the correct quadrant at least.

3For convenience, we will assume that the axes of the ellipse lie along the horizontal
and the vertical; adjusting the method to allow for the axes to lie in an arbitrary direction is
simply a case of rotating the set of calculated waypoints about the centre of the ellipse by the
desired angle. Note that, again, the start and end angles of the arc would have to be adjusted
to take this rotation into account.

3

x

y

O

1

t ..= 0A

B

C

D t ..= 1

M
α

Figure 3: Set up for approximating a circular arc.

1. Points A, D, and M can be expressed simply as follows:

a = cosα x̂− sinα ŷ, (5a)

d = cosα x̂+ sinα ŷ, (5b)

m = x̂. (5c)

Here we have assumed that we wish for the endpoints of the Bézier
arc to align exactly with the endpoints of the true circular arc: this is
to ensure continuity when multiple arcs are joined together to form a
composite.

2. We further require AB and CD to be tangents to the true arc at A and D,
respectively, in order that the joins between Bézier curves be smooth.
Hence,

(b− a) · a = (d− c) · d = 0. (6)

3. Lastly, symmetry requires that BC be parallel to the y-axis and centered
on the x-axis. This permits us to define the constants λ and µ that
satisfy

b = λ x̂− µ ŷ, (7a)

c = λ x̂+ µ ŷ. (7b)

Our method is then as follows: we will choose λ so that the midpoint of the
Bézier arc coincides with M – the midpoint of the true arc – then adjust µ to
ensure that Equation 6 is satisfied for this choice of λ. This should give us a
good overall fit.

Calculating λ and µ Evaluating Equation 4 at t = 0.5 gives:

B(0.5) =
1

8
a+

3

8
b+

3

8
c+

1

8
d

!
= m. (8)

4

Substituting in Equations 5 and 7 and rearranging for λ yields

λ =
4− cosα

3
. (9)

Equation 6 now gives:

µ = sinα+ (cosα− λ) cotα (10a)

= sinα+
4

3
(cosα− 1) cotα. (10b)

Note that we are also able to Taylor expand these results if necessary:

λ =
1

3
α+

1

9
α3 +

1

360
α5 +O

(
α6
)
, (11a)

µ = 1 +
1

6
α2 − 1

72
α4 +O

(
α6
)
. (11b)

Assessment of Accuracy

Equations 5, 7, 9, and 10 provide all of the information necessary to begin
testing the model. As stated before, we will calculate the relative error
in radius that occurs when the model is applied to an arc of a given total
angle, and then use this data to determine the largest angle that should be
approximated with a single Bézier curve. Such a calculation is most easily
carried out using MATLAB, and source code for doing so is provided in
Appendix A. The results have been plotted in Figure 4, and some key values
are highlighted in Table 1.

Computer graphics For a graphics application it is reasonable to require
that an approximated curve be accurate to within about one pixel when
drawn to a target display. In 2015, the largest display size that an application
is likely to be required to draw to is 4K, and so we require that the relative
radial error does not exceed about 1 in 4000; the third column of Table 1
shows that this can be achieved by using one cubic Bézier per π/2 radians
of arc.

Design and manufacture The accuracy requirements of computer aided
design and manufacture are generally more stringent than those for com-
puter graphics, but they can often still be met using Bézier curves. We see
from Figure 4 that one curve per π/4 radians results in an error on the order
of one part per million, although beyond this it may prove significantly more
economical to work within a system that has native circular arc support.

5

Figure 4: Relative error in radius versus total arc angle for a circular arc
approximated by a single cubic Bézier curve.

Angle Relative Error Potential Misalignment

π/4 4.2× 10−6 None
π/2 2.7× 10−4 1 px
π 1.8× 10−2 75 px

3π/2 2.8× 10−1 1130 px

Table 1: Error in radius that occurs when using a single cubic Bézier curve
to approximate a circular arc. The third column shows the potential mis-
alignment that would occur when drawing the arc to fill a 4K display.

6

Proposed Implementation

Based on the preceeding analysis we propose the following method as a
means of approximating elliptical arcs using cubic Béziers in a graphics
application:

1. Adjust the start and end angles of the arc to take into account the linear
scaling that will be performed in Step 4.

2. Split the required arc up into sectors of π/2 radians, with a final ‘re-
mainder’ sector if necessary.

3. Approximate every full sector as a cubic Bézier curve on the unit circle,
as in Equations 5 through 10. The Bézier waypoints of each curve will
need to be rotated around the origin according to the required start
and end angle.

4. If the remainder sector exists, and has angular size greater than a
practical minimum, use a cubic Bézier to approximate it in the same
way as the other sectors. For displays no bigger than 4K, a minimum
angle on the order of 10−4 radians ought to be sufficient.4

5. Scale the waypoints of the resulting composite Bézier linearly in the
horizontal and vertical directions according to the specified elliptical
width and height. This assumes that the end user is willing to rotate
the returned arc themselves if they desire the axes to lie in a different
direction, and that they will adjust the start and end angles to account
for this.

If, in the future, greater accuracy is required, the implementation can be
updated simply by replacing π/2 with a smaller angle.

An example implementation using the p5.js JavaScript library5 can be
found in Appendix B.

Comparison with Other Methods

Bézier curves are by no means the only way to approximate elliptical curves,
and it would be worthwhile to briefly compare our method to its alternatives.
A chord-based approximation is possibly the most popular alternative due
to the ease of its implementation, and so it will serve as a useful comparison.

4This will mean that the arc starts and stops within one pixel of the specified angles at
the radius.

5http://p5js.org/

7

Figure 5: Use of chords to approximate a circle.

A simple chord method involves dividing the circle on which the arc
is to be drawn into n equal sectors, and using an n-sided polygon to con-
nect their vertices; when n is suitably large, the polygon serves as a good
approximation to the circle. This is illustrated in Figure 5.

The greatest radial error here occurs at the midpoint of each sector: the
true radius exceeds the effective radius at the chord by a fraction 1− cos ε,
where 2ε = 2π/n is the angle subtended by the chord. Achieving the
same relative error as is afforded by the method described above requires
ε < 2.3× 10−2 and hence n > 135.

Whereas the Bézier method uses, on average, 1.6 coordinates in memory
and 0.4 graphics calls per radian of arc, the chord method requires 43 and 21,
respectively. It is clear that the Bézier method is significantly more efficient.6

Conclusion

We have proposed a simple method for approximating arbitrary elliptical
arcs using cubic Bézier curves, and have found that this approach can offer
a vast improvement in efficiency over other, chord-based methods, whilst
being only mildly more difficult to implement, if at all. Our method is
certainly not the best way to use Bézier curves to approximate arcs – the
fact that all radial errors were positive is an indication of the room for
improvement – but it is capable of achieving the accuracy required by most
graphics applications using a modest amount of computation. An improved
method would focus on minimising the total error over the entire path
of each curve (rather than simply fixing the midpoint), but whether the
improvement would justify the analytical effort involved in its derivation
(and likely additional computation) remains to be seen.

6We are assuming that the system in question has native support for interpolating cubic
Béziers, for example when this is provided by specialised functions on the graphics card.
When this is not the case, the Béziers will themselves be approximated by chords further
down the graphics pipeline, resulting in an overall efficiency that is similar to (but generally
no worse than) the simple chord method.

8

A MATLAB Test Code

1 % Generates approximations of circular arcs of different sizes using a single
2 % cubic Bezier curve and then calculates and plots the maximum error in radius
3 % that occurs in each approximation.
4
5 EPSILON = 0.001; % Approximately 1/20th of a degree.
6
7 % Iterate over arcs of increasing angle, using EPSILON as the step.
8 errors = zeros(floor(2 * pi / EPSILON), 2);
9 nDivisions = 1;
10 for angle = EPSILON : EPSILON : 2 * pi
11 bezier = circular_arc_to_bezier(-angle / 2, angle / 2);
12 points = evaluate_cubic_bezier(bezier, nDivisions);
13
14 % Calculate the radial error on each interpolated Bezier point.
15 curveErrors = zeros(nDivisions, 1);
16 for pointNo = 1 : nDivisions
17 radius = norm(points(pointNo, :));
18 curveErrors(pointNo) = radius - 1;
19 end
20
21 % Record the greatest error.
22 maxError = max(curveErrors);
23 minError = min(curveErrors);
24 if (abs(minError) > abs(maxError))
25 errors(nDivisions, 2) = minError;
26 else
27 errors(nDivisions, 2) = maxError;
28 end
29 errors(nDivisions, 1) = angle;
30
31 nDivisions = nDivisions + 1;
32 end
33
34 disp(’Created a list of (angle, error) pairs.’);
35
36 clear angle bezier curveErrors EPSILON maxError minError nDivisions ...
37 pointNo points radius;

Listing 1: bezierArcAccuracyTest.m

9

1 function bezier = circular_arc_to_bezier(startAngle, stopAngle)
2 % circular_arc_to_bezier Generates a cubic Bezier representing a circular arc.
3 % bezier = circular_arc_to_bezier(startAngle, stopAngle) returns Bezier
4 % waypoints representing a unit radius circular arc between ‘startAngle‘ and
5 % ‘stopAngle‘ radians.
6
7 TWO_PI = 2 * pi;
8
9 % Make all angles positive...
10 while (startAngle < 0)
11 startAngle = startAngle + TWO_PI;
12 end
13 while (stopAngle < 0)
14 stopAngle = stopAngle + TWO_PI;
15 end
16
17 % ...and confine them to the interval [0,TWO_PI).
18 startAngle = mod(startAngle, TWO_PI);
19 stopAngle = mod(stopAngle, TWO_PI);
20
21 % Exceed the interval if necessary in order to preserve the size and
22 % orientation of the arc.
23 if (startAngle > stopAngle)
24 stopAngle = stopAngle + TWO_PI;
25 end
26
27 % Evaluate constants.
28 ALPHA = (stopAngle - startAngle) ./ 2;
29 COS_ALPHA = cos(ALPHA);
30 SIN_ALPHA = sin(ALPHA);
31 COT_ALPHA = 1 ./ tan(ALPHA);
32 PHI = startAngle + ALPHA;
33 COS_PHI = cos(PHI);
34 SIN_PHI = sin(PHI);
35 LAMBDA = (4 - COS_ALPHA) ./ 3;
36 MU = SIN_ALPHA + (COS_ALPHA - LAMBDA) .* COT_ALPHA;
37
38 % Return Bezier.
39 bezier = zeros(4,2);
40 bezier(1,1) = cos(startAngle);
41 bezier(1,2) = sin(startAngle);
42 bezier(2,1) = LAMBDA .* COS_PHI + MU .* SIN_PHI;
43 bezier(2,2) = LAMBDA .* SIN_PHI - MU .* COS_PHI;
44 bezier(3,1) = LAMBDA .* COS_PHI - MU .* SIN_PHI;
45 bezier(3,2) = LAMBDA .* SIN_PHI + MU .* COS_PHI;
46 bezier(4,1) = cos(stopAngle);
47 bezier(4,2) = sin(stopAngle);
48 end

Listing 2: circular_arc_to_bezier.m

10

1 function points = evaluate_cubic_bezier(bezier, nDivisions)
2 % evaluate_cubic_bezier Generates coordinates that represent a cubic Bezier.
3 % points = evaluate_cubic_bezier(bezier, nDivisions) returns coordinates for
4 % a series of ‘nDivisions‘ chords that represent the curve ‘bezier‘.
5
6 % Get waypoint vectors.
7 A = bezier(1, :);
8 B = bezier(2, :);
9 C = bezier(3, :);
10 D = bezier(4, :);
11
12
13 % Return coordinates.
14 points = zeros(nDivisions + 1, 2);
15 pointNo = 1;
16 for t = 0 : 1 ./ nDivisions : 1;
17 points(pointNo, :) = (1 - t).^3 .* A + 3 .* t .* (1 - t).^2 .* B + ...
18 3 .* t.^2 .* (1 - t) .* C + t.^3 .* D;
19 pointNo = pointNo + 1;
20 end
21 end

Listing 3: evaluate_cubic_bezier.m

11

B Example Implementation

1 /**
2 * Approximate a general elliptical arc using [up to four] cubic Beziers.
3 */
4 function exampleArc(x, y, w, h, start, stop) {
5
6 // Make all angles positive...
7 while (start < 0) {
8 start += TWO_PI;
9 }
10 while (stop < 0) {
11 stop += TWO_PI;
12 }
13
14 // ...and confine them to the interval [0,TWO_PI).
15 start %= TWO_PI;
16 stop %= TWO_PI;
17
18 // Adjust angles to counter linear scaling.
19 if (start <= HALF_PI) {
20 start = atan(w / h * tan(start));
21 } else if (start > HALF_PI && start <= 3 * HALF_PI) {
22 start = atan(w / h * tan(start)) + PI;
23 } else {
24 start = atan(w / h * tan(start)) + TWO_PI;
25 }
26 if (stop <= HALF_PI) {
27 stop = atan(w / h *tan(stop));
28 } else if (stop > HALF_PI && stop <= 3 * HALF_PI) {
29 stop = atan(w / h * tan(stop)) + PI;
30 } else {
31 stop = atan(w / h * tan(stop)) + TWO_PI;
32 }
33
34 // Exceed the interval if necessary in order to preserve the size and
35 // orientation of the arc.
36 if (start > stop) {
37 stop += TWO_PI;
38 }
39
40 // Create curves
41 var epsilon = 0.00001; // Smallest visible angle on displays up to 4K.
42 var arcToDraw = 0;
43 var curves = [];
44 while(stop - start > epsilon) {
45 arcToDraw = min(stop - start, HALF_PI);
46 curves.push(acuteArcToBezier(start, arcToDraw));
47 start += arcToDraw;
48 }
49

12

50 // Draw curves
51 var rx = w / 2.0;
52 var ry = h / 2.0;
53 curves.forEach(function (curve, index) {
54 bezier(x + rx * curve.ax, y + ry * curve.ay,
55 x + rx * curve.bx, y + ry * curve.by,
56 x + rx * curve.cx, y + ry * curve.cy,
57 x + rx * curve.dx, y + ry * curve.dy);
58 });
59 }

Listing 4: exampleArc.js

1 /**
2 * Generate a cubic Bezier representing an arc on the unit circle of total
3 * angle ‘size‘ radians, beginning ‘start‘ radians above the x-axis.
4 */
5 function acuteArcToBezier(start, size) {
6
7 // Evaluate constants.
8 var alpha = size / 2.0,
9 cos_alpha = cos(alpha),
10 sin_alpha = sin(alpha),
11 cot_alpha = 1.0 / tan(alpha),
12 phi = start + alpha; // This is how far the arc needs to be rotated.
13 cos_phi = cos(phi),
14 sin_phi = sin(phi),
15 lambda = (4.0 - cos_alpha) / 3.0,
16 mu = sin_alpha + (cos_alpha - lambda) * cot_alpha;
17
18 // Return rotated waypoints.
19 return {
20 ax: cos(start),
21 ay: sin(start),
22 bx: lambda * cos_phi + mu * sin_phi,
23 by: lambda * sin_phi - mu * cos_phi,
24 cx: lambda * cos_phi - mu * sin_phi,
25 cy: lambda * sin_phi + mu * cos_phi,
26 dx: cos(start + size),
27 dy: sin(start + size)
28 };
29 }

Listing 5: acuteArcToBezier.js

13

